
• To produce 2D images of a mathematically

described 3D environment

• Issues:

– Describing the environment: Modeling (mostly

later)

– Computing the image: Rendering

Graphics Toolkits

• Graphics toolkits typically take care of the details
of producing images from geometry

• Input:

– Where the objects are located and what they look like

– Where the camera is and how it behaves

– Parameters for controlling the rendering

• Output: Pixel data in a framebuffer

– Data can be put on the screen

– Data can be read back for processing (part of toolkit)

OpenGL
• OpenGL is an open standard graphics

toolkit

– Derived from GL toolkit

• Provides a range of functions for modelling,

rendering and manipulating the framebuffer

• Why use it? Portable, hardware supported, simple

and easy to program

• Alternatives: Direct3D, Java3D - more complex

and less well supported respectively

Coordinate Systems

• The use of coordinate systems is

fundamental to computer graphics

• Coordinate systems are used to describe the

locations of points in space

• Multiple coordinate systems make graphics

algorithms easier to understand and

implement

Coordinate Systems (2)
• Different coordinate systems represent

the same point in different ways

• Some operations are easier in one

coordinate system than in another

x

y
(2,3)

u

v

x

y
(1,2)

u

v

Transformations
• Transformations convert points between

coordinate systems

x

y
(2,3)v

x

y
(1,2)

u

v

u

u=x-1

v=y-1

x=u+1

y=v+1

Transformations

(Alternate Interpretation)
• Transformations modify an object’s shape

and location in one coordinate system

x

y
(2,3)

(1,2)

x

y
x’=x-1

y’=y-1

x=x’+1

y=y’+1

2D Affine Transformations

• An affine transformation is one that can be

written in the form:












































y

x

yyyx

xyxx

yyyyx

xxyxx

b

b

y

x

aa

aa

y

x

byaxay

byaxax

or

Why Affine Transformations?

• Affine transformations are linear

– Transforming all the individual points on a line

gives the same set of points as transforming the

endpoints and joining them

– Interpolation is the same in either space: Find

the halfway point in one space, and transform

it. Will get the same result if the endpoints are

transformed and then find the halfway point

Composition of Affine

Transforms

• Any affine transformation can be composed

as a sequence of simple transformations:

– Translation

– Scaling

– Rotation

– Shear

– Reflection

2D Translation

• Moves an object







































y

x

b

b

y

x

y

x

10

01

x

y

x

y

bx

by

2D Scaling
• Resizes an object in each dimension

x

y








































0

0

0

0

y

x

s

s

y

x

y

x

x
y

x

y

sxx

syy

2D Rotation
• Rotate counter-clockwise about the origin

by an angle 

























 














0

0

cossin

sincos

y

x

y

x





x

y

x

y



X-Axis Shear
• Shear along x axis (What is the matrix for y

axis shear?)








































0

0

10

1

y

xsh

y

x x

x

y

x

y

Reflect About X Axis

• What is the matrix for reflect about Y axis?










































0

0

10

01

y

x

y

x

x x

Rotating About An Arbitrary

Point
• What happens when you apply a rotation

transformation to an object that is not at the

origin?

• Solution:

– Translate the center of rotation to the origin

– Rotate the object

– Translate back to the original location

Rotating About An Arbitrary Point

x

y

x

y

x

y

x

y

Scaling an Object not at the

Origin

• What also happens if you apply the scaling

transformation to an object not at the

origin?

• Based on the rotating about a point

composition, what should you do to resize

an object about its own center?

Back to Rotation About a Pt
• Say R is the rotation matrix to apply, and p

is the point about which to rotate

• Translation to Origin:

• Rotation:

• Translate back:

• The translation component of the composite

transformation involves the rotation matrix.

What a mess!

pxx 

RpRxpxRxRx )(

pRpRxpxx 

Homogeneous Coordinates
• Use three numbers to represent a point

• (x,y)=(wx,wy,w) for any constant w0

• Typically, (x,y) becomes (x,y,1)

• Translation can now be done with matrix

multiplication!























































11001

y

x

baa

baa

y

x

yyyyx

xxyxx

Basic Transformations

• Translation: Rotation:

• Scaling:

















100

10

01

y

x

b

b

















100

00

00

y

x

s

s















 

100

0cossin

0sincos





Homogeneous Transform

Advantages

• Unified view of transformation as matrix
multiplication

– Easier in hardware and software

• To compose transformations, simply
multiply matrices

– Order matters: AB is generally not the same as
BA

• Allows for non-affine transformations:

– Perspective projections!

– Bends, tapers, many others

3D Transformations Watt Section 1.1

• Homogeneous coordinates:

(x,y,z)=(wx,wy,wz,w)

• Transformations are now represented as 4x4

matrices

• Typical graphics packages allow for

specification of translation, rotation, scaling

and arbitrary matrices

– OpenGL: glTranslate[fd], glRotate[fd],

glScale[fd], glMultMatrix[fd]

3D Translation































































11000

100

010

001

1

z

y

x

t

t

t

z

y

x

z

y

x

3D Rotation

• Rotation in 3D is about an axis in 3D space

passing through the origin

• Using a matrix representation, any matrix

with an orthonormal top-left 3x3 sub-matrix

is a rotation

– Rows are mutually orthogonal (0 dot product)

– Determinant is 1

– Implies columns are also orthogonal, and that

the transpose is equal to the inverse

3D Rotation

0

:examplefor and

11000

0

0

0

1

































































yzxzyyxyyxxx

zzzyzx

yzyyyx

xzxyxx

rrrrrr

z

y

x

rrr

rrr

rrr

z

y

x

Problems with Rotation Matrices

• Specifying a rotation really only requires 3

numbers

– Axis is a unit vector, so requires 2 numbers

– Angle to rotate is third number

• Rotation matrix has a large amount of

redundancy

– Orthonormal constraints reduce degrees of

freedom back down to 3

– Keeping a matrix orthonormal is difficult when

transformations are combined

Alternative Representations

• Specify the axis and the angle (OpenGL

method)

– Hard to compose multiple rotations

• Specify the axis, scaled by the angle

– Only 3 numbers, but hard to compose

• Euler angles: Specify how much to rotate

about X, then how much about Y, then how

much about Z

– Hard to think about, and hard to compose

• Quaternions

CAD Software

CAD software can be divided based upon the

technology used:

1. 2-D drawing. Its applications include,

· mechanical part drawing

· printed-circuit board design and layout

· facilities layout

· cartography

2. Basic 3-D drawing (such as wire-frame modelling)

3. Sculptured surfaces (such as surface modelling)

4. 3-D solid modelling

5. Engineering analysis

Some of the commonly available functions provided

by CAD software are:

• Picture manipulation: add, delete, and modify

geometry and text.

• Display transformation: scaling, rotation, pan, zoom,

and partial erasing.

• Drafting symbols: standard drafting symbols.

• Printing control: output device selection,

configuration and control.

• Operator aid: screen menus, tablet overly, function

keys.

• File management: create, delete, and merge picture

files.

Coordinate Systems

1. The Model Coordinate System or (world coordinate

systems) (MCS).

2. The Working Coordinate System (WCS).

3. The Screed Coordinate System (or device coordinate

system) (SCS).

MCS : is the reference space of the model with respect to all

the model geometrical data is stored.

WCS: is a convenient user-defined system that facilitates

geometric construction.

SCS: is a two-dimensional device-dependent coordinate

system whose origin is usually located ate the lower left

corner of the graphic display.

The Model Coordinate System or (world coordinate systems)

(MCS)

MCS is the only coordinate system that software recognizes when

storing or retrieving geometrical information in or from a model

database

Example:

The Working Coordinate System (user coordinate system)

(WCS).

The software calculates the corresponding homogeneous

transformation matrix between WCS and MCS to convert the

inputs into coordinates relative to the MCS before sorting

them in the database.

The Screed Coordinate System (or device coordinate system)

(SCS).

The range and measurement unit of

an SCS can be determined in

three different methods:

1. pixel grid: a 1024x1024 display

has an SCS with a range of (0,0)

to (1024, 1024).

2. Normalized coordinate system.

The range of the SCS be chosen

from (0,0) to (1,1).

3. Drawing size that user chooses.

MCS DCS

NDC = Normalized Device Coordinate System

Window-To-Viewport Mapping

Which parts of an object are to appear on the display screen,

and where they should appear. These decisions are reached

by choosing two rectangular regions, one in MCS-the

window-and the other in NDC-the viewport.

A window as a rectangular region of the world coordinate

space, and the viewport as a rectangular region of the

normalized device coordinate space.

The normalization or viewing transformation indicated in the

figure, also referred to as window- to-viewport-mapping,

maps the window onto the viewport. Obviously, the mapping

is carried over to the device through a workstation

transformation.

Window

and

viewport

definitions

Window-to-viewport mapping

Wire-frame Modeling

Wire-frame modelling uses points and curves

(i.e. lines, circles, arcs), and so forth to

define objects.

The user uses edges and vertices of the part

to form a 3-D object

Wire-frame model part

Example

Surface Modeling

Surface modeling is more sophisticated than wireframe modeling

in that it defines not only the edges of a 3D object, but also its

surfaces.

In surface modeling, objects are defined by their bounding faces.

Examples

Tabulated cylinder. This is a surface generated by

translating a planar curve a certain distance along a

specified direction (axis of the cylinder).

Bezier surface. This is a surface that approximates given

input data. It is different from the previous surfaces in

that it is a synthetic surface. Similarly to the Bezier curve,

it does not pass through all given data points. It is a

general surface that permits, twists, and kinks . The

Bezier surface allows only global control of the surface.

B-spline surface. This is a surface that can approximate

or interpolate given input data (Fig. 6-9). It is a synthetic

surface. It is a general surface like the Bezier surface but

with the advantage of permitting local control of the

surface.

Solid Modeling

Solid models give designers a complete

descriptions of constructs, shape, surface, volume,

and density.

In CAD systems there are a number of

representation schemes for solid modeling

include:

•Primitive creation functions.

•Constructive Solid Geometry (CSG)

•Sweeping

•Boundary Representation (BREP)

Primitive creation functions:

These functions retrieve a

solid of a simple shape from

among the primitive solids

stored in the program in

advance and create a solid of

the same shape but of the

size specified by the user.

Constructive Solid Geometry (CSG)

CSG uses primitive shapes

as building blocks and

Boolean set operators (U

union, difference, and 

intersection) to construct

an object.

Sweeping

Sweeping Sweeping is

a modeling function in

which a planar closed

domain is translated or

revolved to form a

solid. When the planar

domain is translated,

the modeling activity is

called translational

sweeping; when the

planar region is

revolved, it is called

swinging, or rotational

sweeping.

Boundary Representation

Objects are represented by their bounded faces.

B-Rep Data Structure

